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Summary 

The goal of the project was to elucidate computational mechanisms underlying perceptual 
decisions between multiple alternatives as well as their neural implementation. To this 
end we have performed behavioral experiments in humans as well as combined 
behavioral and neurophysiological experiments in non-human primates. Computational 
modeling techniques were used for addressing the computational mechanisms underlying 
the perceptual decisions. A multi-alternative version of the random dot motion direction 
discrimination task, using a multi-component stimulus, was found to provide a rich 
behavioral dataset, spanning accuracy levels from chance to perfect and a wide range of 
mean response times while providing simultaneous experimental control over how much 
sensory evidence is provided for each of the alternatives. The behavior was found to be 
consistent with a number of integration-to-threshold mechanisms, including integration 
with and without leakage, feedforward as well as feedback inhibition mechanisms for 
mediating the competition between the alternatives, and linear as well as nonlinear 
mechanisms for combining the signals associated with the different alternatives. While 
these different mechanisms produce virtually indistinguishable decision behavior, we 
have been able to demonstrate that the internal dynamics of these mechanisms are quite 
different, which should be addressable by performing high-resolution recordings of brain 
activity while decisions are being made. To this end we have trained non-human primates 
to perform the same decision task and we have performed multi-electrode recordings of 
decision-related activity in parietal cortex. Data collection and analysis are currently 
being finalized to be able to apply them to discriminating between different decision 
models. We have also addressed how different decision mechanisms relate to multi- 
alternative decision theory. 
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Human behavior 
A multi-alternative version of the random dot motion direction discrimination task, using 
a multi-component stimulus, was used to address the computational and neural 
mechanisms underlying perceptual decisions between multiple alternatives. Briefly, 
subjects were asked to watch a visual noise stimulus with three embedded components of 
coherent motion and to indicate the direction of the strongest component. The three 
motion coherences were randomly chosen from trial to trial and the subjects7 choices and 
response times were measured (see Niwa & Ditterich, 2008 for further details). The 
resulting behavior spanned the full range of accuracy levels (from chance to perfect), a 
wide range of mean response times (from approx. 600 ms to approx. 1,600 ms). and the 
simultaneous manipulation of how much sensory evidence was provided for each of the 
alternatives allowed an independent manipulation of either accuracy or response time. 

( Ompuiational models accounting for the human behavior 
The behavior was found to be consistent with an integration-to-threshold model with 
three integrators (one for each choice option), which all accumulate a different linear 
combination of three task-relevant sensory evidence signals. As soon as one of the 
integrators reaches a critical decision threshold the choice is determined and the decision 
process terminates (see Niwa & Ditterich. 2008 for further details). 

In the meanwhile we have been able to demonstrate that this is only one of a 
number of possible integration-to-threshold mechanisms that could be responsible for the 
observed behavior. The different alternatives include integrators with and without 
leakage, feedforward as well as feedback inhibition mechanisms for mediating the 
competition between the integrators, as well as linear and nonlinear ways of combining 
the integrator signals. The feedforward inhibition model published in Niwa & Ditterich 
(2008) and the feedback inhibition-based Leaky, Competing Accumulator (LCA) model 
(Usher & McClelland. 2001) are both examples of decision mechanisms relying on linear 
signal combinations, whereas the implementations of MSPRT that have been proposed by 
Bogacz & Gurney (2007) and by Bogacz (2009) make use of nonlinear signal 
combinations. While these different mechanisms are virtually indistinguishable in terms 
of the produced decision behavior, their internal dynamics can be shown to be quite 
different. They make different predictions how the states of the integrators should evolve 
over time and also for the correlation structure of the input signals to the integrators. It 
should therefore be possible to discriminate between these mechanisms based on 
simultaneous high-resolution (both spatial and temporal) recordings of decision-related 
brain activity associated with different alternatives. It is further possible to address how 
the different decision mechanisms are related to multi-alternative decision theory. For 
example, for the simpler case of decisions between two alternatives it can be shown that 
the decision should be made on the basis of the likelihood ratio between the two 
alternatives and that, if the decision is based on sequential sampling of independent 
sensory evidence, the decision process should be terminated when the likelihood ratio 
exceeds a particular threshold. This algorithm, the sequential probability ratio test 
(SPRT), has been proven to guarantee the lowest possible average sample size (or mean 
decision time) for any desired accuracy level (Wald,   1945). Furthermore, the drift 



diffusion model, a popular mathematical psychology model of decisions between two 
alternatives, is an implementation of this algorithm if the drift rate is proportional to the 
logarithm of the likelihood ratio, and the difference between the activities of two pools of 
opposing sensory neurons has been shown to approximate this property (Gold & Shadlen. 
2001). The situation is more complicated when more than two alternatives are available. 
In this case, the optimal algorithm for any desired accuracy level is still unknown. It has 
been shown that an extension of SPRT, the multi-hypothesis sequential probability ratio 
test (MSPRT) is asymptotically optimal in the case of a negligible error rate (Dragalin et 
aL 1999). However, human decision makers are rarely perfect. I have extended this 
framework to discuss what kind of statistical tests are implemented or approximated by 
different decision mechanisms and how their optimality compares in a biologically 
relevant range of error rates. A manuscript is currently being finalized and will be 
provided when published. 

Neural recordings from non-human primates 
To be able to perform high-resolution recordings of decision-related brain activity, three 
non-human primates were trained to perform the same task as our human observers. 
Although they did not quite reach the same accuracy level (approx. 80% in humans and 
approx. 70% in monkeys) and although they were overall faster than the human observers 
(mean response times ranging from approx. 600 ms to approx. 1.000 ms), the overall 
behavioral pattern was qualitatively similar. Multi-electrode recordings were performed 
in the lateral intraparietal area (LIP) in parietal association cortex. Neurons in this area 
were previously shown to carry decision-related activity in a motion discrimination task 
(Roitman& Shadlen, 2002). Whenever possible, simultaneous recordings from at least 
two neurons, associated with either the same or with different choice options, were 
performed. In addition to action potentials, local field potentials (LFPs) were also 
recorded. The basic firing rate pattern of the recorded neurons turned out to be consistent 
with previous observations: approx. 200 ms after motion onset, the firing rate shows a 
coherence-dependent ramping behavior (see Fig. 1 for preliminary data) and, when the 
neuron is associated with the chosen option, reaches a stereotyped level immediately 
prior to the monkey's behavioral response (see Fig. 2). 
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Fig. 2: Firing rate immediately 
prior to saccade onset (behavioral 
response for report in» the choice) 
is choice-selecti\c 

Since we have used a 3-component stimulus, the slope of the initial ramp (between 250 
and 400 ms after motion onset), which is assumed to reflect the accumulation of sensory 
evidence, is expected to be a function of the three relevant coherence levels. The 
difference between the coherence of the component providing evidence for picking a 
choice target inside the recorded neuron's response field and the average of the other two 
coherences turned out to be a major determining factor (see Fig. 3). This is what the 
model published in Niwa & Ditterich (2008) would predict. However, there are two other 
interesting features: The slopes have a clear positive offset (they are not zero for zero net 
coherence) and they can be quite different for the same net coherence (see the three 
symbols stacked on top of each other at zero net coherence). The first effect is not 
predicted by a feedforward inhibition model with perfect integrators and Churchland et 
al. (2008). who have also reported this phenomenon, have interpreted it as evidence for a 
top-down soft deadline signal. However, as discussed in Ditterich (2006). such a signal 
would be expected to have a strong impact on the shape of the response time (RT) 
distributions. Our preliminary data, however, do not provide any strong evidence for a 
major shortening of the tail of the RT distributions. Instead, preliminary modeling 
indicates that this offset could just be the consequence of the nonlinear properties of a 
biological integrator: it cannot represent negative values. The second observation (quite 
different slopes for the same net coherence) is also interesting because it could be an 
indication of a normalization process operating at the level of the decision circuitry. We 
are currently looking into this in more detail. The three symbols stacked on top of each 
other at zero net coherence belong, from top to bottom, to stimuli with no coherent 
motion, with coherent motion of 10% in each direction, and with coherent motion of 20% 
in each direction. Thus, the slope is actually decreasing with increasing coherence. The 
slope change therefore also cannot be explained by a feedback inhibition model, which 
would predict an effect in the opposite direction (higher coherence should be providing a 
stronger excitatory drive to the integrator). 
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Fig. 3: Firing rate slopes as a 
function of net coherence. The 
color of the symbols indicates the 
sum of all three coherences (blue ■ 
low. red = high). 

As mentioned above, different decision mechanisms make different predictions for the 
correlation structure of the input signals to the integrators. Our hope was that this 
correlation structure would show up in the correlation structure of the spike pattern 
emitted by two simultaneously recorded neurons that are coding for two different options. 
Unfortunately, the majority of pairs of neurons that code for two different options, which 
we have recorded so far. did not show any significant correlation in their spike timing. 
This can be interpreted a number of ways and only more detailed modeling can help us 
come up with an answer. Possible options include decision mechanisms that actually 
predict almost no correlation between the input signals to the integrators, or. since we are 
only recording two individual neurons out of probably quite large pools, the connections 
could be so sparse that correlations that should be there at the population level cannot be 
seen at the single neuron level. We have also recorded from pairs of neurons that code for 
the same option. The majority of these show the expected positive cross-correlation near 
zero lag (due to common, probably excitatory, input), but they also tend to show an 
unexpected, asymmetric negative cross-correlation at a relatively large lag of approx. 
10 ms (see Fig. 4 for a typical example). This could indicate unexpected, directed 
inhibitory connections between neurons belonging to a particular decision pool, and we 
are currently looking into this finding in more detail. 
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In addition to spiking activity we have also recorded local field potentials (LFPs). There 
is still considerable debate what exactly LFPs are, but there is some consensus that they 
are strongly influenced by dendritic activity and therefore might be considered a measure 
of the input to a brain area in contrast to the spiking activ it\. w hich retlects the output of 
the recorded neuron. We are still in the process of analyzing the LFPs. but preliminary 
results indicate that they contain information about the motion stimulus, that they do so 
before the spiking activity shows selectivity for the motion stimulus, and that what they 
are coding does not seem to be redundant with the information in the spiking activity. 
Fig. 5 shows the difference in the low-frequency power spectrum between trials with only 
low coherences and trials with only high coherences. (This is where we see the strongest 
effect in the LFPs in contrast to the firing rate, where the strongest effect is seen between 
trials with strong support/weak evidence against and weak support/strong evidence 
against.) The main effect is a reduction in the LFP power around 8 Hz for overall high 
coherence trials in the first 200 ms after motion onset. We are currently performing a 
more detailed quantitative analysis of this phenomenon. 
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Fig. 5: Difference in LFP power between 
trials with only low coherences and trials with 
only high coherences. Stars indicate 
time/frequency combinations where the 95% 
confidence intervals of both spectra do not 
overlap. 



We are currently in the process of finishing up the neural recordings and their analysis. 
We still need to combine the neural data and the modeling. Some preliminary results 
have been presented at last year's Society for Neuroscience Annual Meeting (Bollimunta 
& Ditterich. 2009). More results will be presented this year and publications will be 
provided as they become available. 
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